RKI Exploration & Production LLC

210 Park Avenue, Suite 900, Oklahoma City, OK 73102 405-949-2221 Fax 405-949-2223

June 30, 2015

Cole Anderson NSR Program Manager Department of Environmental Quality, Air Quality Division Herschler Building, 2-E 122 West 25th Street Cheyenne, WY 82002

Re:

Air Permit Application

RKI Exploration & Production LLC

Patsv Draw Unit 38-72-33 1FH (API#: 49-009-30289)

Dear Mr. Anderson:

Pursuant to the requirements of the Wyoming Air Quality Standards and Regulations New Source Review permitting program and the associated Chapter 6 Section 2 (C6 S2) Oil and Gas Production Facilities Permitting Guidance document dated September 2013, RKI Exploration & Production LLC submits this *C6 S2 Application for an Air Quality Permit* for the subject well.

The site consists of one oil well, 4 oil and 2 produced water storage tanks, a 2-phase separator (unfired), a heater-treater, and a dual inlet production flare. Gas is going to a sales line. Produced liquids are loaded out by truck. First day of production was April 12, 2015.

Average daily production for the new well 30 days after FDOP was 242-bbl oil, 209-bbl water, and 241-mcf gas.

Should you have any questions concerning this application, please contact me at the phone number or email address listed in the application.

Sincerely,

Jeffrey L. Ingerson

Senior Air Permitting Engineer

Reviewer HMB

cc:

Modeler

D.E.

File

ACCO 1247

WY YOMING

Department of Environmental Quality Air Quality Division

Permit Application Form

		Is this a revision to ar	n existing applicat	tion?			
WYON	MING	Yes NoX			С	Pate of Application: _	6/29/2015
		Previous Application	#:				
COMPA	NY INFOR	RMATION:					
Company N			RKI E	xploration & F	Production, LLC		
Address:			210 Park Ave				
City:	Oklahon	na City		ahoma		Zip Code:	73102
Country:		USA		one Number:	(4	105) 949-2221	
3873	/ INFORM				·····	,	
Facility Na			Pats	sey Daw Unit	38-72-33 1FH		
to the second second to the second	ty or Existin	g Facility:	New	T			
Facility Des	At any orange	,	Oil	」 Production V	Vellsite/Pad		
Facility Cla		Minor		rating Status:		rating	
Facility Typ		Production		7			
, ,,				_			
For Oil & G	as Product	ion Sites ONLY:					
First Date	of Productio	on (FDOP)/Date of Mo	dification:		4/12/2015		
Does produ	uction at thi	is facility contain H2S	*	No			
*If yes, con	ntact the Div	vision.			'		
API Numbe	er(s):		Patsy Drav	v Unit 38-72-3	3 1FH (API# 49-0	09-30289)	
NAICS Cod	e:		211111 Cru	ıde Petroleum	and Natural Gas	Extraction	
FACILITY	LOCATIO	ON:					
*Enter the fa	acility locatio	n in either the latitude/I	ongitude area or se	ection/township	/range area. Both a	are not required.	
Physical Ac	ddress:						
City:			Zip Code:				
State:	WY	Co	ounty: Coi	nverse			
OR			-		•		
Latitude:	43.22	274 Long	itude: -105	5.50899			
Quarter Qu	uarter:	nw ne	Quarter	:			
Section:	33	Town	nship:	38N		Range:	72W
For	longitude (and latitude, use NAL	83/WGS84 datu	um and 5 digit	ts after the decim	al (i.e. 41.12345, -10	7.56789)
CONTAC	T INFORI	MATION:					
		AND NSR Permitting Contact	is required for your ap	plication to be dee	med complete by the a	gency.	
Title:	Mr.	First N			Jeffrey	•	
Last Name		Ingers			-	· · · · · · · · · · · · · · · · · · ·	
Company N	Name:		RKI Ex	– xploration & F	Production, LLC		
Job Title:			Senior Air	r Permitting E	ngineer		
Address:			210 Park	Aveneue, Su	ite 700		
City:	Okla	ahoma City	State:		Oklahoma		
Zip Code:		73102					
17 100000000000000000000000000000000000	hone No.:	(405) 987-2181		E-mail:	j	ingerson@rkixp.com	
Mobile	Phone No.:	(405) 820-1779		Fax No.:		(405) 949-2223	
Contact Type: N		NSR Permitting Cor	200 200 D	Start Date:		March, 2014	

Additional	Contact Tvp	pe (if needed):					
	Mr.	First Name:			Charles		
Last Name:	:	Ahn					b.
Company N	Name:		RKI Ex	_ xploration & F	Production, LLC		
Job Title:			Manag	er, EHS/Regul	atory		
Address:			210 Park	Aveneue, Su	ite 900		
City:	Okla	homa City	State:		Oklahoma		
Zip Code:		73102					
Primary Ph	one No.:	(405) 996-5771	_	E-mail:	<u>C</u>	ahn@rkixp.com	
Mobile Pho	one No.:		_	Fax No.:		(405) 949-2223	
Contact Typ	pe:	Compliance contact		Start Date:		March, 2014	
FACILITY	APPLICA	TION INFORMATION	<u>V:</u>				
General	Info:						
		d location or is it a new/ g	reenfield fac	cility?		Yes	l
		ng document been include				No	
		n a sage grouse core area?		and a crown		No	
		e grouse core area, what i		umber?			1
	Ji 57	sage grouse core area, cor			partment.	-	
		plicability - Facility L					
		nt Deterioration (PSD):	24011			No	1
		Source Review:				No	1
	g Section					110	ı
			tounine if u		i	No	1
		rision been contacted to de	etermine ii r	nodeling is red	quirear	No	
is a modell	ing analysis	part of this application?				No	l
Is the nron	osed projec	t subject to Prevention of	Significant C	Deterioration (PSD) requirements?	No	1
		rision been notified to sche		The state of the s		No	1
		ol been submitted to and		5 5		No	1
		rision received a Q/D analy			1070		J
	or an AQRV		313 (0 3001111	it to the respe	etive i Livis to deterii	No	1
	d Attachr	**************************************				110	J
Facility Ma		<u>⊓eπιз.</u>					
16	w Diagram	✓					
	Analysis (if a						
	lanning Dod						
	oject Descr						
Emissions (Calculations						
1.		Jeffrev L. Ingers	on		Senior Air P	ermitting Engine	er

an Official Representative of the Company, state that I have knowledge of the facts herein set forth and that the same are true and correct to the best of my knowledge and belief. I further certify that the operational information provided and emission rates listed on this application reflect the anticipated emissions due to the operation of this facility. The facility will operate in compliance with all applicable Wyoming Air Quality Standards and Regulations.

Responsible Official (Printed Name)

Signature:

Date: 6/29/15

Title

Separator/Treater

Company Equipment ID:	100	HTR01				
Company Equipment Des	cription:	Horizontal Heater Treater w/ 0.500 mmbtu burner				
-						
Operating Status:	Operating					
Initial Construction Comm	nencement Date:					
Initial Operation Commer	ncement Date:	3/7/2015				
Most Recent Construction	n/ Modification					
Commencement Date:						
	·					
Most Recent Operation C	Commencement Date:					
Select reason(s) for this e	emissions unit being in	ncluded in this application (must be completed regardless of date				
of installation or modific	ation):					
Reason:	Construction (Green	field/New Facility)				
If reason is <i>Reconstructio</i>	on or Temporary Perm	it or Other, please explain below:				
Type of Vessel:	Heater-Treater	Is Vessel Heated? Yes				
Operating Temperature (F):	110				
Operating Pressure (psig)	:	50				
SCC Codes: List all Source	Classification Code(s)	(SCC) that describe the process(es) performed by the emission				
source (e.g., 1-02-002-04)).					
		1-00-111-00				
Potential Operating Schedule: Provide the o		pperating schedule for this emission unit.				
Hours/day:		24				
Hours/year:		8760				

Control Equipment: Yes
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ✓ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lawest Achievable Emission Pate (LAEP): Was a LAEP Analysis completed for this emission unit?
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Not Effected
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Effected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Effected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
• •
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

HTR01

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards Potential Potential Pre-Controlled Potential to Emit to Emit to Emit Potential Emissions Basis for (PTE) (lbs/hr) (tons/yr) Determination (tons/yr) Units Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) 0.02 0.004 0.02 AP-42 PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 0 0 0 AP-42 5.) Nitrogen Oxides 0.21 0.049 0.21 **AP-42** (NOx) 6.) Carbon monoxide 0.18 0.041 0.18 AP-42 (CO) 7.) Volatile organic 0.01 0.001 0.01 AP-42 compounds (VOC) 8.) Lead (Pb) 9.) Total Hazrdous Air 0 0 **AP-42** Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide 0 0 0 AP-42 (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist (SAM)

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

		Effic	ciency Standards	1		
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

		Effic	ciency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)			9			
5.)						
6.)						
7.)						
8.)						

Storage Tank/Silo

Company Equipment II	OILTNK 01-04 4 x 400 bbl Oil Storage Tanks						
Company Equipment D							
Operating Status:		Operating					
Initial Construction Con							_
Initial Operation Comn				4/12	/2015		
Most Recent Construct	tion/ Modific	ation					
Commencement Date:							_
Most Recent Operation	n Commence	ement Date:					
Select reason(s) for th	is emissions	unit being in	cluded in t	his applicat	ion (must b	e complet	ed regardless of date of
installation or modific	ation):						
Reason:	Constru	ction (Green	field/New I	Facility)	1		
If reason is <i>Reconstruc</i>				, , , , , , , , , , , , , , , , , , ,			
Material Type: Description of Materia	Liquid Stored:				Cru	de Oil	
1950							
Capacity:	400		2	Units:	barrels		
Maximum Throughput	: _		52925		_	Units:	barrels/yr
Maximum Hourly Thro	ughput:		6			Units:	barrels/hr
Is Tank Heated?:	No				-		
SCC Codes: List all Source (e.g., 1-02-002-		tion Code(s)	(SCC) that d		process(es) performe	d by the emission
			1-00-1	10-20			
Potential Operating S Hours/day:		Provide the o	perating sc	hedule for t	his emissio	n unit.	
Hours/year	_		8760		-	10	
a 5							

Control Equipment: Yes
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ✓ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
Yes Volume Value of the Complete of this emission and:
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Subject, but exempt
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart: 0000
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Effected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Effected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Emissions Information- The following tables request information needed to determine the applicable

OILTNK 01-04

requirements and the compliance status of this emission unit with those requirements. **Efficiency Standards** Pre-Controlled Potential Potential Potential Potential Emissions to Emit to Emit to Emit Basis for (PTE) (lbs/hr) (tons/yr) Determination (tons/yr) Units Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic 146.95 0.671 2.939 Tanks Program compounds (VOC) 8.) Lead (Pb) 9.) Total Hazrdous Air 1.82 0.008 0.036 **Tanks Program** Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist

(SAM)

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

		Effici	iency Standards	٦		
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

		Effic	ciency Standards	1		
	Pre-Controlled	Potential		Potential	Potential	T
		to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:					•	
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Storage Tank/Silo

Company Equipment II	WTRNK 01-02						
Company Equipment D		2 x	400 bbl Wa	ter Storage	Tank		
Operating Status:		Operating					
Initial Construction Con	mmenceme	ent Date:	¥				_
Initial Operation Comn	nencement	Date:		4/12	/2015		
Most Recent Construct	tion/ Modif	ication					
Commencement Date:							_
Most Recent Operation	n Commend	ement Date:					_
Select reason(s) for th	is emission	s unit being in	cluded in t	his applicat	ion (must l	e complet	ed regardless of date of
installation or modific	ation):				_		
Reason:	Constr	uction (Green	field/New	Facility)			
If reason is <i>Reconstruc</i>		mporary r crim			Jan Below		
Material Type:	Liquid]					
Description of Materia	l Stored:			Produ	iced Water	(1% Oil Car	rryover)
Capacity:	400			Units:	barrels		
Maximum Throughput	:		365		_	Units:	barrels/yr
Maximum Hourly Thro	ughput:		1			Units:	barrels/hr
Is Tank Heated?:	No						
SCC Codes: List all Sou source (e.g., 1-02-002-		ation Code(s)	(SCC) that o	describe the	e process(es	s) performe	d by the emission
			1-00-1	10-20			
Potential Operating S	chedule:	Provide the o	perating so	hedule for	this emissio	n unit.	
Hours/day:			24				
Hours/year		-	8760		-		
, ,					-		

Control Equipment: Yes
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit? Yes No Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: OOOO
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Effected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Effected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.

requirements and the compliance status of this emission unit with those requirements.

			Effic	iency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Pollu	tants:						
1.)							
	articulate emissions						
(P	PE/PM) (formerly						
pa	articulate matter,						
PI	M)						
2.)							
PI	M #10 microns in						
di	iameter (PE/PM10)						
3.)							
	M #2.5 microns in						
	iameter (PE/PM2.5)						
	Sulfur dioxide (SO2)						
	itrogen Oxides						
	NOx)						
2016	arbon monoxide						
	CO)						
	olatile organic	1.013			0.005	0.02	Tanks Program
	ompounds (VOC)						
	ead (Pb)						
/ /	otal Hazrdous Air	0.01			0	0	Tanks Program
	ollutants (HAPs)						
	uoride (F)						
	ydrogen Sulfide						
	H2S)						
	1ercury (Hg)						
4 1	otal Reduced Sulfur						
	TRS)						
	ulfuric Acid Mist						
(S	SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

			Effic	iency Standards	1		
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit	(4)	to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:	•						
1.)							
2.)							
3.)							
4.)							
5.)							
6.)							
7.)							
8.)							

		Effici	Efficiency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Loading/Unloading/Dump

Company Equipment II	D:			1FF	OIL LOAD		
Company Equipment D	escription:	_			Oil Loadout	Facility	
Operating Status: Operating Initial Construction Commencement Date: Initial Operation Commencement Date: Most Recent Construction/ Modification Commencement Date: Most Recent Operation Commencement Date: Select reason(s) for this emissions unit being included in this application or modification): Reason: Construction (Greenfield/New Facility)					2015		
If reason is <i>Reconstruc</i>	tion or Tem	porary Permit	or <i>Other,</i>	please expla	in below:		
Type of Material: Material Description:	Liquid			(Crude Oil		
Maximum Annual Thro Maximum Hourly Thro Detailed Description of	ughput:	lloading/Dump	52925 240 Source:		U	Inits: Inits: oaded f	barrels/yr barrels/hr rom storage tanks
into tanker trucks for the destruction in the vap			er truck va	pors are ret	urned to stor	rage tan	ks for
SCC Codes: List all Sour (e.g., 1-02-002-04).	rce Classifica	ition Code(s) (S	SCC) that de	scribe the p	rocess(es) pe	erforme	d by the emission source
			1-00-11	2-01			
Potential Operating S Hours/day: Hours/year		Provide the op	erating sch 24 8760	edule for th	is emission u	nit.	

Control Equipment: Yes If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
☐ Yes ✓ No
Pollutant:
Proposed BACT:
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
☐ Yes ✓ No
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Not Effected Not 2005 800 800 800 800 800 800 800 800 800
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Effected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Effected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:
- Tare 03 NESTIAL Subpart.
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Oil Loadout

Efficiency Standards Pre-Controlled Potential Potential Potential to Emit to Emit to Emit Potential Emissions Basis for (PTE) (tons/yr) Units (lbs/hr) (tons/yr) Determination Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic 0.07 3.6 0.0164 AP-42 compounds (VOC) 8.) Lead (Pb) 9.) Total Hazrdous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist (SAM)

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

		Effic	iency Standards			
	D 102000	 Potential to Emit		Potential to Emit	Potential to Emit	Basis for
	(tons	 (PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

				_		
		Effic	Efficiency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Loading/Unloading/Dump

Company Equipment I	D:		1FI	H WTR LOAD	
Company Equipment D	Description:		Prod	luced Water Loadout I	Facility
Marie 19					
Operating Status:		Operating			
Initial Construction Co		- 100 (100 (100 (100 (100 (100 (100 (100			_
Initial Operation Comm			4/12	/2015	_
Most Recent Construct	tion/ Modifica	tion			
Commencement Date:					_
Most Recent Operation	n Commencer	nent Date:			
•			ed in this application	on (must be complete	— d regardless of date of
installation or modific				(p	a regardiose of dute of
Reason:		tion (Greenfield	/New Facility)]	
		•			
If reason is <i>Reconstruc</i>	tion or Temp	orary Permit or	Other, please expl	ain below:	
Type of Material:	Liquid				
Material Description:			Produced W	/ater w/ 1% Crude Oil	
-					
Maximum Annual Thro	oughput:		65	_ Units:	barrels/yr
Maximum Hourly Thro			40	_ Units:	barrels/hr
Detailed Description of	f Loading/Unlo	pading/Dump Sou	ırce:	Crude oil is loaded fr	om storage tanks
into tanker trucks for	transport to r	narket. Tanker t	ruck vapors are re	turned to storage tan	ks for
destruction in the vap	or combustor	(FLR2).			
SCC Codes: List all Sou	rce Classificat	on Code(s) (SCC)	that describe the	process(es) performed	by the emission source
(e.g., 1-02-002-04).					
			1-00-112-01		
Potential Operating S	chedule: P	rovide the opera	ting schedule for th	nis emission unit.	
Hours/day		2	4	_	
Hours/year	r:	87	60	_	

Control Equipment: Yes If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.								
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit? Yes No Pollutant:								
Proposed BACT:								
*If yes, attach BACT Analysis with this application.								
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit? Yes No Pollutant: Proposed LAER:								
*If yes, attach LAER Analysis with this application.								
Federal and State Rule Applicability: New Source Performance Standards (NSPS): Not Effected New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Effected National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).								
Part 61 NESHAP Subpart:								
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Effected								
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63 Part 63 NESHAP Subpart:								
Prevention of Significant Deterioration (PSD): Not Affected These rules are found under WAQSR Chapter 6, Section 4.								
Non-Attainment New Source Review: Not Affected These rules are found under WAQSR Chapter 6, Section 13.								

Water Loadout

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards Potential Potential Potential Pre-Controlled to Emit Potential Emissions to Emit to Emit Basis for (PTE) (lbs/hr) (tons/yr) Determination (tons/yr) Units **Criteria Pollutants:** 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic 0.02 0.0001 AP-42 compounds (VOC) 8.) Lead (Pb) 9.) Total Hazrdous Air Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist (SAM)

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

		Effic	iency Standards	7		
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

		Effic	Efficiency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emission	ns to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:	E					
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Control Equipment:

Flare/Combustor

Manufacturer:		Steffes		_	Date Install	led:	4/12	/2015
Model Name and		LP Flare			Company C	Control		
Number:		SVG-3			Equipment	ID:	FL	R01
Company Control Equip	oment							
Description:			3	" diameter	x 24' high L	P Flare Stac	k	
			×					
Pollutant(s) Controlled	:	СО	□NOx	Pb	☐ SO2	✓ VOC	☐ PM	
☐ PM (FIL)	☐ PM C	ondensible	☐ PM 1	O (FIL)	☐ PM 2.	5 (FIL)	☐ PM 10	☐ PM 2.5
☑ Other: HAPs								
					-			
Design Control Efficien	cy (%):	g	98	Capture Eff	ficiency (%):		1	.00
Operating Control Effic	iency (%):		9	8				
Flare Type:	Elevate	d- Open		Elevated Fl	are Type:	Non-A	ssisted	
Ignition Device:	Yes		Flame Pres	ence Senso	r:	Yes		
Inlet Gas Temp (F):	10	00	_	Flame Pres	ence Type:		Therm	ocouple
Gas Flow Rate (acfm):		5	.1	_	Outlet Gas	Temp (F):	1	850
✓ This is the o	only control	equipment	t on this air	contaminan	t source			
If not, this control equi	pment is:		Prin	nary	Seco	ndary	Pa	rallel
List all other emission u	units that ar	e also						
vented to this control e	equipment:		Oil & Wate	er Tanks, Lo	adout Facili	ties		
List all release point ID:	s associated	with this						
control equipment:			Flare Stack	01				

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

			Effic	ciency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Po	llutants:						
1.)						T	
	Particulate emissions						
	(PE/PM) (formerly						
	particulate matter,						
	PM)						
2.)							
	PM #10 microns in						
	diameter (PE/PM10)						
3.)							
	PM #2.5 microns in						
	diameter (PE/PM2.5)						
4.)	Sulfur dioxide (SO2)	0			0	0	Other
5.)	Nitrogen Oxides	0.43			0.1	0.43	Other
	(NOx)						
6.)	Carbon monoxide	0.11			0.02	0.11	Other
	(CO)						
7.)	Volatile organic	2.17			0.5	2.17	Other
	compounds (VOC)						
	Lead (Pb)						
9.)	Total Hazrdous Air	0.03			0.01	0.03	Other
	Pollutants (HAPs)						
	Fluoride (F)						
11.)	Hydrogen Sulfide	0			0	0	Other
	(H2S)						
	Mercury (Hg)						
13.)	Total Reduced Sulfur						
	(TRS)						
14.)	Sulfuric Acid Mist						
	(SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

		Effic	iency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)				270000000000000000000000000000000000000		
8.)						

				_		
		Effic	iency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:	English and the second and the secon					
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)					T	

Control Equipment:

Flare/Combustor

Manufacturer:	Steffes		Date Install	ed:	4/12/2	2015
Model Name and	HP Flare		Company C	Control		
Number:	SHP-6		Equipment	ID:	FLRO)2
Company Control Equip	oment					
Description:		6" diameter x 24' hig	h HP Flare S	tack (Emerg	ency Use)	
Pollutant(s) Controlled:	CO PM Condensible	NOx Pb	SO2 PM 2.	✓ VOC 5 (FIL)	☐ PM ☐ PM 10 [☐ PM 2.5
✓ Other: HAPs						
Design Control Efficient Operating Control Effic	N. S. S. Landson	98 Capture Ef	ficiency (%):		100	0
Flare Type:	Elevated- Open	Elevated F	lare Type:	Non-As	ssisted	
Ignition Device:	Yes	Flame Presence Senso	or:	Yes		
Inlet Gas Temp (F):	100	Flame Pre	sence Type:		Thermo	couple
Gas Flow Rate (acfm):	1	100	Outlet Gas	Temp (F):	185	0
Yeld 86.100 860. 80		t on this air contaminar				
If not, this control equi	pment is:	Primary	☐ Seco	ndary	Para	llel
List all other emission u	ınits that are also					
vented to this control e	quipment:	Heater Treater for 1F	H during em	nergency		
List all release point IDs	s associated with this					
control equipment:		Flare Stack 02				

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission <u>unit with those requirements.</u>

1FH FLR02 Used 876 hr/yr

			The second secon	iency Standards	7		, ,
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
eria Po	llutants:	Management of the second					
1.)							
	Particulate emissions						
	(PE/PM) (formerly						
	particulate matter,						
	PM)						
2.)							
	PM #10 microns in						
	diameter (PE/PM10)	300 00					
3.)							
	PM #2.5 microns in						
	diameter (PE/PM2.5)						
4.)	Sulfur dioxide (SO2)	0			0	0	Other
5.)	Nitrogen Oxides	0.54			1.22	0.54	Other
	(NOx)						
6.)	Carbon monoxide	0.13			0.31	0.13	Other
	(CO)						
7.)	Volatile organic	1.31			2.99	1.31	Other
	compounds (VOC)						
8.)	Lead (Pb)						
9.)	Total Hazrdous Air	0.06			0.14	0.06	Other
	Pollutants (HAPs)						
	Fluoride (F)						
11.)	Hydrogen Sulfide	0			0	0	Other
	(H2S)						
	Mercury (Hg)						
13.)	Total Reduced Sulfur						
	(TRS)						
14.)	Sulfuric Acid Mist						
	(SAM)	10					

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

		Effic	iency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

		Ltt: o	ionay Ctandards	_		
			iency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Fugitives

Company Equipment II	D:		FUG01				
Company Equipment D	escription:			Fugiti	ive Emissions: We	II 1FH	

Operating Status:		Operating					
Initial Construction Con	nmenceme	ent Date:					
Initial Operation Comn	nencement	Date:		4/12/20)15		
Most Recent Construct	ion/ Modif	ication					
Commencement Date:							
Most Pasant Operation	Common	comont Data					
Most Recent Operation			alcode al location		/		
		s unit being in	ciuaea in thi	is application	(must be complet	ted regardless of date of	
installation or modific							
Reason:	Const	ruction (Green	field/New Fa	acility)			
If reason is <i>Reconstruc</i>	tion or Tei	mporary Permi	t or Other,	please explair	າ below:		
Type of Fugitive Emissi	on:	Fugitiv	ve Leaks at C)&G			
SCC Codes: List all Sou (e.g., 1-02-002-04).	rce Classific	cation Code(s) (SCC) that de	escribe the pro	ocess(es) performe	ed by the emission source	
1-00-115-00							
Potential Operating S	chedule:	Provide the o	nerating sch	edule for this	emission unit.		
Hours/day:		1 Tovide tile 0	24	cadie for tills	Cimission unit.		
14000			8760				
Hours/year	•		8/80				

Control Equipment: No						
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.						
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?						
☐ Yes ✓ No						
Pollutant:						
Proposed BACT:						
*If yes, attach BACT Analysis with this application.						
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?						
Yes Vas a EACH Analysis completed for this emission drift:						
Pollutant						
Proposed LAER:						
*If yes, attach LAER Analysis with this application.						
Federal and State Rule Applicability:						
New Source Performance Standards (NSPS): Not Effected						
New Source Performance Standard are listed under 40 CFR 60-						
Standards of Performance for New Stationary Sources.						
NSPS Subpart:						
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Effected						
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61.						
(These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:						
Part of Neshar Subpart.						
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Effected						
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)						
standards are listed under 40 CFR 63						
Part 63 NESHAP Subpart:						
Prevention of Significant Deterioration (PSD): Not Affected						
These rules are found under WAQSR Chapter 6, Section 4.						
Non-Attainment New Source Review: Not Affected						
These rules are found under WAQSR Chapter 6, Section 13.						
meserales are round and in which the profit of obtaining to.						

FUG01

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards Pre-Controlled Potential Potential Potential Potential Emissions to Emit to Emit to Emit Basis for (PTE) (lbs/hr) (tons/yr) Determination (tons/yr) Units Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic 1.221 0.279 1.221 AP-42 compounds (VOC) 8.) Lead (Pb) 9.) Total Hazrdous Air 0.003 0.001 0.003 AP-42 Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist (SAM)

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

		Effic	ciency Standards	1		
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

		Effic	ciency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)	<u> </u>			1		

Release Point Information:

Complete the table below for *each* release point. Please include release point information for each emission unit. Multiple attachments may be necessary. A release point is a point at which emissions from an emission unit are released into the ambient (outside)air. List each individual release point on a separate pair of lines (release point ID and description). *For longitude and latitude, use NAD 83/WGS84 datum and 5 digits after the decimal (i.e.* 41.12345, -107.56789)

Sta	ack Release Point Informa	ation		-
Company Release Point ID:	Release Point Type:	Vertical		
FLR02	Release Point Latitude:		4	3.2274
	Release Point Longitud	e:	-10	05.50899
Company Release Point Description:	Base Elevation (ft):		4874	
	Stack Height (ft):		24	
HP Heater Treater Emergemcy Flare	Stack Diameter (ft):		0.5	
(used 10% 876 hrs/yr)	Exit Gas Velocity (ft/s):	4		
	Exit Gas Temp (F):	-	1850	
	Exit Gas Flow Rate (acf	m):		
Company Release Point ID:	Release Point Type:	Vertical		
FLR01	Release Point Latitude			3.2274
	Release Point Longitud	le:	-10	05.50899
Company Release Point Description:	Base Elevation (ft):		4874	
	Stack Height (ft):		24	
LP Oil & Water Tank Flare	Stack Diameter (ft):		0.25	
1PH 1-4 Oil Tank Vents	Exit Gas Velocity (ft/s):	_		
1PH 1-2 Water Tank Vents	Exit Gas Temp (F):		1850	
	Exit Gas Flow Rate (acf	m):		
Company Release Point ID:	Release Point Type:			
	Release Point Latitude	:		
	Release Point Longitud	le:		
Company Release Point Description:	Base Elevation (ft):			
	Stack Height (ft):			
	Stack Diameter (ft):			
	Exit Gas Velocity (ft/s):			
	Exit Gas Temp (F):			
	Exit Gas Flow Rate (acf	m):		
Company Release Point ID:	Release Point Type:			
	Release Point Latitude	:		
	Release Point Longitud	le:		
Company Release Point Description:	Base Elevation (ft):			
	Stack Height (ft):			
	Stack Diameter (ft):			
	Exit Gas Velocity (ft/s):			
	Exit Gas Temp (F):			
	Exit Gas Flow Rate (acf	m):		

Complete the table below for each fugitive (area, volume, line) release point. List each individual release point on a separate line.

Fugit	ive Release Point Information	
Company Release Point ID: FUG01	Release Point Latitude: Release Point Longitude: Release Height (ft):	43.2274 -105.50899 4874
Company Release Point Description:	ncicase neight (it).	40/4
Company Release Point ID:	Release Point Latitude: Release Point Longitude: Release Height (ft):	
Company Release Point Description:		
Company Release Point ID:	Release Point Latitude: Release Point Longitude: Release Height (ft):	
Company Release Point Description:		
Company Release Point ID:	Release Point Latitude: Release Point Longitude: Release Height (ft):	
Company Release Point Description:		

Patsy Draw Unit 38-72-33 1FH WDEQ Documents

FORM 3 Nov. 2012		0.1	Y 1310 C		ATE OF							9. A.	PI WELL NO.			
NOV. 2012		OL	L AND G	AS (N COM	IMISSION	N		-	12	COUNTY	9-009	9-30289	STATE
				Con	P. O. Bo		603				-	12.			13.	
WELL C	OMPLETION	OR RE	COMPLET		sper Wyo			SINGLE DUPLIC	ATE ON ST	ATE LAND	-	5. S	Conve		NO.	Wyoming
la. Type of Well	X Oil Well	Г	Gas Well		Dry Dry	СВМ	(SCHIII)	Other:	ATE ON ST	ATE LAND					33.7.2	
N 200 1000 30 W		New Well				1				D.m.	_	7 11	NIT OR COMM	II INITII	ZATION AGRI	FEMENT
b. Type of Completi		New Well	"v	orkover/	L	Deepen		Plug Back	L	Diff.	Resvr.	7. 0.	IVII OK COIVIIVI	10141112	LATION AGIO	ELIVILIVI
Initial	X		Other										,	WYV	V180208X	ζ
2. Name of Operator												8. F	ARM OR LEASI	E NAM	E	
RKI Exploration	on and Product	ion, LL	LC.									P	atsy Draw	Unit	t 3	38-72 33
3. Address							- 1	Phone No. (include				8a. V	WELL No.			
210 Park Aven								405.987.2229							1FH	
Oklahoma City 4. Location of Well (Report location clearly	v and in acc	cordance with W	OGCC re	equirements with	footages and		Email: g	gsmith(a	rkixp.cc	<u>m</u>	10. I	FIELD NAME			
At surface	Se	ec 33				NAD	Lat.	7900 1 100 100 100 000 on Lin punto	Long.	. 30000000 0.00000						
			335' FNL	213	35' FEL	83	Dat.	43.227400	Long.	105.50	8996	11 6	SEC. T, R, M., O		VC	VEV
Top prod. Int.	D 12071' NV		553' FN	_ 20	96' FEL	NAD 83	Lat.	12 220550	Long.	105 50	0025	OR A		3 т		
	D 11623' Se		333 114	20	JO TEE	NAD	T -4	43.229550	т	105.50	3833		MULTIPLE CON		3014	K /2W
depth M 14. Date Spudded	D 16250' SV	VNE 1		_ 20		83 Date Comple	Lat.	43.240995	Long.	105.50	8767	I	OOCKET OR A	A. DAT		.*
2/1/20	(1986)	Dute 1.D.	2/24/201	5	10.	Date Comple		& A 4/12/20	15 X	Ready to	Prod.	17. 1	LLEVATIONS (I	DI', KK) 74' GR
18. Total Dept	h. MD	16250	0' 10	Dlug	back T.D.:	MD		15993	3'	2). Depth Brid	ge Plu	g Set: MD			
	TVD	11623	5'			TVD		11620)'		(Require	s Prior	Approval) TVD			
21. Type Electric & o	other Logs Run (Subm	it 1 copy an	nd 1 LAS of each), Cased	and Open Hole,	Btm Hole Pres	s Survey			22. V	as well cored?	,	X No		Yes (Subr	mit analysis)
			Cemer	it, TV	D, MD					V	as DST run?		X No		Yes (Subr	mit report)
										I	irectional Surv	ey?	No	2	Yes (Subr	mit copy, w/ cert.)
23. Casing an	d Liner Record (R	eport all s	strings set in	vell)						N. CO.	0 T C	_				
Hole Size	Size/ Grade	Wt	t. (#/ft.)	Тор	(MD)	Bottom(M	D)	Stage Cemente	r Depth		. & Type of ment	Slu	ırry Vol. (Bbl)	Се	ement Top*	Amount Pulled
13-1/2"	10-3/4" J-55	_	0 1/2	0		1782					Class G	-	260		0	
8-3/4" 6"	7" P-110 4-1/2" P-110	32		0		10828					Class G	-	227		0	
0	4-1/2 P-110	13	3 1/2	0		16100).			440 SK	Class G		127	_	7340'	
24. Tubing Size	Record Depth Set (MD	<u>, T</u>	Packer Depth (MD)	Siz	ra	Dor	oth Set (MD)	Dacker	Depth (MD)	1 0	ize	Dont	h Set (N	(D) T	Pauleur Danish (MD)
2-7/8"	11471'	7	Tacker Deput	(VID)	4.5		Dep	our set (IVID)		1450'	- 3	ize	Бери	n set (N	(ID) I	Packer Depth (MD)
25. Producii	ng Intervals						26.	Perforation R	ecord							
4)	Formation		Top		Bott 159			Perforated Inte			Size	1	No. of Holes			Status
A)	Frontier		1207	1	159	43		15791' 1594 15543' 1569			2-3/4"	_	32			tive tive
								15295' 1544			2-3/4"	_	32			tive
								15047' 1519			2-3/4"		32			tive
								14799' 1495		- 1	2-3/4"		32			tive
								14551' 1470			2-3/4"		32			tive
								14303' 1445			2-3/4"	_	32			tive
			-					14055' 1420 13807' 1395			2-3/4"		32			tive
								13559' 137			2-3/4"		32			tive
								13311' 1346			2-3/4"		32			tive
								13063' 132			2-3/4"		32			tive
								12815' 1296			2-3/4"		32		Ac	tive
								12567' 127			2-3/4"		32	_		tive
			-					12319' 124' 12071' 1222			2-3/4"	-	32	_		tive
Sumi	narv:	Tots	al Frac Sta	res:	16 Te	otal Slurry	v (bbls)				l Proppan	t (lb				tive 4,028,620
28. Product:	ion- Interval A	100	25. Form		Frontie		, (3013)			ive Interv)71' -	159		,,020,020
Date First Produced	Test Date	Ho	ours Tested	Test	Production	Oil Bbl		Gas MCF	Water Bbl	Oil Gr	wity Corr. API		Gas Gravity	F	lowback Dispo	osal
4/12/2015	4/14/20		24	_		50	8	559.5	1782		39		0.86996			89 BBLS
Choke Size	Tbg.Press		Sg Press	. 24	Hr. Rate	Oil Bbl		Gas MCF		300000000000000000000000000000000000000	Oil Ratio		Res. Press.		Well	i. ron
21/64	SI N/	A	2300			50	8	559.5	1782	2	1101.38		5230		Produ	icing-ESP

^{*} See instructions and spaces for additional data on page 2

29. Disposition of Gas (Soil	ld, used for fuel, Sold			Test Witness:				
30. Summary of Porous Zon	nes (include Aqu	ifers):				31. Formation (Log) Markers:		
Show all important zones o time tool open, flowing and			d intervals and all drill-stem t	ests, including depth interval tested, cus	shion used,	Froi	ntier	
Formation	Тор	Bottom	Descr	riptions Contents, Etc.		Name		TVD
Frontier	11794'	15943'	Oil, Gas, Water			Fox Hills		6560'
						Lewis		6661'
						Teckla		7235'
						Teapot		7879'
						Parkman		8184'
						Pierre		8818'
						Sussex		9482'
						Niobrara		10888'
						Frontier		11578'
	osal Totals =	= 16,876 v	vith 6,300 into Ri		,444 ii	nto Riehle 37-70 3-2SWD, 6,13	32 into	Riehle 37-70 3-3SWD
33. Indicate which items ha	ve been attached	by placing a c	check in the appropriate l	ooxes:				
X Electrical/ Mechanical	Logs (1 full set) Ca	used & Open hole	e	Geologic Report		DST Report X Direct	tional Surv	ey w/ Certification
Sundry Notice for plus	gging and cementing	2		Core Analysis		Press. Survey X Other	: <u> </u>	Plat,Form 10,Cement,BHL
34. I hereby certify that the	foregoing and a	ttached inforn	nation is complete and co	orrect as determined from all avai	ilable reco	ords (see attached instructions)*		
Name (please print)	Gwyn Smith	1		Tit	le Sr.	. Regulatory Analyst		
Signature				Da	te <u>5/1</u>	15/2015		

INSTRUCTIONS

If not filed prior to the time this summary record is submitted, copies of all currently available logs (drillers, geologists, sample and core analysis, all types electric, etc.), formation and pressure tests, and directional surveys should be attached hereto, to the extent required by applicable Federal and or State laws and regulations. All attachments should be listed on this form, see space 33.

Space 4: If there are no applicable State requirements, locations on Federal or Indian land should be described in accordance with Federal requirements. Please note all Lat./ Longs. In NAD 83. Calculate all "Top of Producing Intervals" and "BHL" first as distance from the section corner, second as the Lat. /Long. Spacing orders are based on a well location in a section. Well locations must match the surveyed footages.

Space 17: Indicate elevation used for depth measurements given in other spaces on this form and in any attachments.

Space 23: "Sacks Cement": Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the cementing tool. Show how reported top(s) of cement were determined, i.e. circulated (CIR), or calculated (CAL), or cement bond log (CBL), or temperature survey (TS).

Spaces 25 and 28: If this well is completed for commingled production from more than one pool (multiple zone completion), state in space 25 and 26, and in space 25 show the producing interval, or intervals, top(s), bottom(s) and name(s) (if any) for the pools reported in space 28 through 28c. Submit a separate completion report on this form for each pool separately produced, (not commingled).

Space 27: If a well was fracture treated or stimulated, all data required in Chapter 3, Section 45 must be filed with this Completion Report.

Space 27: If a well was fracture treated or stimulated, provide Summary Data for # of Stages, Total Slurry, Total Proppant

- Space 28: Provide well test data for each interval tested or stimulated and flowed.
- Space 32: Provide frac flowback disposal volumes and handling and disposal site.
- Space 32: Provide final annulus casing pressure.
- Space 32 or Attachment: Provide all Stimulation Chemicals by Name, Type, Volumes and CAS #s.

Attach a wellbore diagram whenever possible.

Form 10 DECEMBER, 2000

STATE OF WYOMING

OIL AND GAS CONSERVATION COMMISSION Office of State Oil and Gas Supervisor

			3ox 2640				
	DDODLICT		yoming 8260		DEDODE		
	PRODUCT	ION TEST AND	GAS-U	IL RATIO			
OPERATOR					API NUMBER		
RKI EXPLORATION AND P	RODUCTION				49-009-30289		
ADDRESS					WELL NAME &	NUMBER	
210 PARK AVE., SUITE 900 OKLAHOMA CITY, OK 73012						UNIT 38-72 33-1F	Ή
LEASE NAME	RES	SERVOIR			FIELD		
PATSY DRAW UNIT		FRO	NTIER			WILDCAT	
LOCATION,(quarter-quarter and foot	tages): LATITUDI	E: 43.2274°	LONGITUDE:	-105.508996°	COUNTY		
NW/NE 1,335' FNL	2,135' FEL	Sec. 33 , Twp.	38 N , I	Rge. 72 W		CONVERS	SE
			DATA				
START OF TEST-DATE	ГІМЕ	END OF TEST-DATE	T	ME	DURATION OF T	TEST	
4/14/2015	5:00 AM	4/15/2015		5:00 AM		24 HRS	
TUBING PRESSURE	CASING PRESSURE	SEPARATOR PRI	ESSURE	SEPARATOR TE	MP.	CHOKE SIZE	
N/A	2,300	15	5	12:	5°F	21/64	
OIL PRODUCTION DURING TEST		GAS PRODUCTION DURI	NG TEST		WATER PRODU	CTION DURING TES	ST
508.00	***	559.50			1,78	2.00	
OIL GRAVITY	bbls.	PRODUCING METHOD (F	lowing, pumpir	MCF ig, gas lift, etc.)	1,70	2.00 bbls	
			5020 2				
39 *API			FI	LOWING			
		GAS PRO	DUCTI	ON			
METER MANUFACTURER					ORIFICE WELL	TESTER	X
TOTAL FLOW	Flange Tap	X PIPE TAP	L-10		CRITICAL FLOW	PROVER	
ORIFICE DIAMETER	PIPE DIAMETER (Inside d	ia.)		ORIFICE DIAME	TER		
1		2.067			1		
DIFFERENTIAL PRESSURE RANG	MAX. STATIC PRESSURE RANGE			PIPE DIAMETER			
0-400			0-1500		GAS GRAVITY (Air. LO)		
GAS GRAVITY (Air-1.0)		FLOWING, TEMPERATURE			GAS GRAVITY (Air-1.0)		
0.86996 Meas. X	Est	115.5°F			0.86996 Meas. X Est		
DIFFERENTIAL NO FLOW READI	NG	STATIC NO FLOW READ	ING		24 HOUR COEFFICIENT		
-0.09		12.456			N/A		
DIFFERENTIAL		STATIC			PRESSURE: (Indicate Units)		
190.3			42.4		PSIG		
		TEST F	RESULT	S			
DAILY OIL	DAILY WATER		DAILY GAS		GAS- OIL RA	ATIO	
508 bbls.	1,78		55			1101.38	SCF/STB
I hereby, swear or affirm that rules, regulations and Instruct		_			d was made in a	ccordance with the	
ruies, regulations and mistruct	ions of the wyonin	ig On and Gas Conservand	on Commissio	SIGNATURE	Ada	w/ch	
				TITLE	SR. PRODU	CTION ENGINE	ER
				DATE	5	/14/2015	
SUBMIT I COPY ONLY							

Daily Production Report PATSY DRAW UNIT 38-72 33-1FH - PATSY DRAW UNIT 38-72 33-

Date: 6/23/2015 Time: 9:40 AM

Selected Time Frame: 05/13/2015 - 06/11/2015

Daily Production			
Date	Oil	Gas	Water
06/11/2015	180.87	241	144.98
06/10/2015	185.45	279	143.33
06/09/2015	145.03	277	113.36
06/08/2015	161.28	258	159.98
06/07/2015	221.71	284	203.32
06/06/2015	243.38	305	125.03
06/05/2015	252.13	332	204.97
06/04/2015	274.22	274	160.03
06/03/2015	302.56	149	168.34
06/02/2015	40.01	463	38.31
06/01/2015	206.29	294	215.02
05/31/2015	263.39	84	223.32
05/30/2015	286.31	191	241.63
05/29/2015	305.89	228	236.71
05/28/2015	316.31	342	325.02
05/27/2015	276.31	332	243.31
05/26/2015	230.46	352	206.66
05/25/2015	337.98	17	414.98
05/24/2015	335.07	-19	366.68
05/23/2015	362.16	207	206.66
05/22/2015	106.69	35	145.03

<DT> = Down Time <GM> = Gas Meter

İHS

Daily Production Report PATSY DRAW UNIT 38-72

Date: 6/23/2015 Time: 9:40 AM

PATSY DRAW UNIT 38-72 33-1FH - PATSY DRAW UNIT 38-72 33-

Selected Time Frame: 05/13/2015 - 06/11/2015

Daily Production			
Date	Oil	Gas	Water
05/21/2015	0.00	0	0.61
05/20/2015	222.54	255	200.04
05/19/2015	135.03	266	191.68
05/18/2015	215.88	141	304.98
05/17/2015	217.96	384	288.34
05/16/2015	219.21	309	216.66
05/15/2015	290.06	447	253.36
05/14/2015	516.77	507	213.30
05/13/2015	416.75	0	308.35
Total:	7,267.70	7,231	6,263.99
Average:	242.26	241	208.80

Notes <DT> = Down Time <GM> = Gas Meter

RKI Exploration & Production, LLC Patsy Draw 38-72-33 1FH

nw ne 33, T38N, R72W Converse County, Wyoming

Heater Treater (HTR01)

Run time (hrs): 8,760

Burner Size: 0.500 MMBtu/hr

Fuel Heat Value: 1,020 btu/scf

					Potential Em	missions (tpy)				
	NOx	00	VOC	202	PM10	H2S	HAPs	C02	Methane	N20
HTR-1	0.21	0.18	0.01	00.00	0.02	0.00	0.00	257.65	00.00	0.00

	2500			_	Potential Emissions (lb/hr)	ssions (lb/hr				
	NOX	0	VOC	202	PM10	H2S	HAPs	C02	Methane	N20
HTR-1	0.049	0.041	0.001	00.00	0.004	0.000	0.000	58.8235294	0.00112745	0.00107843

Emission Factors (AP42 1.4 - Natural Gas Combustion)

	lb/MMscf	lb/MMscf lb/MMBtu	
NOx	100	0.09803922	AP-42 Table 1.4-1
00	84	0.08235294	AP-42 Table 1.4-1
VOC	5.5	0.00539216	AP-42 Table 1.4-2
PM	7.6	0.00745098	AP-42 Table 1.4-2
502	09.0	0.00058824	AP-42 Table 1.4-2
CO2	120000	117.647059	AP-42 Table 1.4-2
Methane	2.3	0.0022549	AP-42 Table 1.4-2
N2O	2.2	0.00215686	AP-42 Table 1.4-2

```
*************************
* Project Setup Information
********************************
Project File : M:\Users\JIngerson\Wyoming Air Applications\Patsy Draw Unit 38-72-33 1FH\Oil F Flowsheet Selection : Oil Tank with Separator
Calculation Method : RVP Distillation
Control Efficiency : 98.0%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
                 : Patsy Draw Unit
Filed Name
Filed Name : Patsy Draw Unit

Well Name : Patsy Draw Unit 38-72-33 1

Well ID : 49-009-30289

Permit Number : WDEQ Application Submital

Date : 2015.06.25
                      : Patsy Draw Unit 38-72-33 1FH Oil Tank Flash
                     : 2015.06.25
Date
************************
* Data Input
********************************
separator Pressure : 50.00[psig]
Separator Temperature : 125.00[F]
Ambient Pressure : 12.14[psia]
Ambient Temperature : 55.00[F]
C10+ SG : 0.8237
C10+ MW
No. Component

1 H2S
2 O2
3 CO2
4 N2
5 C1
6 C2
7 C3
8 i-C4
9 n-C4
                          mol %
                          0.0000
                          0.0000
                          0.0238
0.0555
                          0.3630
                          1.0631
                          3.9325
1.2921
                          5.1099
  10 i-C5
11 n-C5
                          3.1839
                          4.2937
  12 C6
13 C7
                          7.1390
  13 C7
14 C8
15 C9
16 C10+
17 Benzene
18 Toluene
19 E-Benzene
20 Xylenes
21 n-C6
                          6.3438
                           2.6286
                        53.7695
                           0.3106
                          1.8976
                         0.5650
                          1.5237
2.8280
        n-C6
      224Trimethylp
                          0.4747
   22
-- Sales Oil ------
Production Rate : 145[bbl/day]
Days of Annual Operation : 365 [days/year]
API Gravity : 39.0
Reid Vapor Pressure : 5.50[psia]
*******************
* Calculation Results
***************************
-- Emission Summary ------
                 Uncontrolled Uncontrolled Controlled Controlled
```

Tot	al HAPs al HC s, C2+ s, C3+	[ton/yr] 1.820 164.212 161.551 146.954	[lb/hr] 0.416 37.491 36.884 33.551	[ton 0.03 3.28 3.23 2.93	4 1	[lb/hr] 0.008 0.750 0.738 0.671		
IInc	ontrolled Recove	ry Info						
0110	Vapor	7.3300	[MSCFD]					
	HC Vapor	7.2600	[MSCFD]					
	GOR	50.55	[SCF/bbl]					
	Emission Composi	tion						
No	Component	Uncontrolled	Uncontrol		rolled	Controlle	ed	
	***	[ton/yr]	[lb/hr]	-	/yr]	[1b/hr]		
1 2	H2S O2	0.000	0.000	0.00		0.000		
3	CO2	0.479	0.109	0.47		0.109		
4	N2	0.710	0.162	0.71	.0	0.162		
5	C1	2.661	0.608	0.05		0.012		
6	C2	14.597	3.333	0.29		0.067		
7	C3 i-C4	73.988 14.826	16.892 3.385	1.48		0.338		
9	n-C4	35.993	8.218	0.72		0.164		
10	i-C5	8.345	1.905	0.16		0.038		
11	n-C5	8.077	1.844	0.16		0.037		
12	C6	1.861	0.425	0.03		0.008		
13 14	C7 C8	1.510 0.459	0.345 0.105	0.03		0.007		
15	C9	0.073	0.017	0.00		0.000		
16	C10+	0.001	0.000	0.00		0.000		
17	Benzene	0.121	0.028	0.00		0.001		
18	Toluene	0.230	0.053	0.00		0.001		
19 20	E-Benzene Xylenes	0.025 0.057	0.006	0.00		0.000		
21	n-C6	1.295	0.296	0.02		0.006		
22	224Trimethylp	0.093	0.021	0.00		0.000		
	Total	165.401	37.763	3.30	8	0.755		
	Stream Data							
	Component	MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emissions
	-		mol %	mol %	mol %	mol %	mol %	mol %
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02 C02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	N2	44.01 28.01	0.0238 0.0555	0.0102	0.0000	0.6908 2.6094	0.1745 0.0589	0.3080 0.7182
5	C1	16.04	0.3630	0.0676	0.0000	14.8525	1.1571	4.6976
6	C2	30.07	1.0631	0.6174	0.0006	22.9266	10.5506	13.7501
7	C3	44.10	3.9325	3.3199	0.2818	33.9871	52.2463	47.5259
9	i-C4 n-C4	58.12 58.12	1.2921 5.1099	1.2244 4.9523	0.7953 4.0690	4.6117 12.8412	8.1361 19.1786	7.2250 17.5402
10	i-C5	72.15	3.1839	3.1888	3.1762	2.9432	3.3923	3.2762
11	n-C5	72.15	4.2937	4.3222	4.3877	2.8954	3.2671	3.1710
12	C6	86.16	3.2020	3.2554	3.4176	0.5801	0.6442	0.6276
13	C7	100.20	7.1390	7.2763	7.6999	0.4037	0.4537	0.4408
14 15	C8	114.23 128.28	6.3438 2.6286	6.4710 2.6819	6.8652 2.8473	0.1057 0.0142	0.1211 0.0176	0.1172 0.0167
16	C10+	235.03	53.7695	54.8655	58.2724	0.0001	0.0001	0.0001
17	Benzene	78.11	0.3106	0.3161	0.3329	0.0404	0.0450	0.0438
18	Toluene	92.13	1.8976	1.9350	2.0506	0.0644	0.0730	0.0708
19	E-Benzene	106.17	0.5650	0.5764	0.6118	0.0059	0.0068	0.0066
20	Xylenes n-C6	106.17	1.5237	1.5545 2.8776	1.6500 3.0292	0.0137 0.3924	0.0159	0.0153
21 22	224Trimethylp	86.18 114.24	2.8280 0.4747	0.4839	0.5125	0.3924	0.4372	0.4256 0.0231
	MW		164.69	167.21	174.56	41.14	48.84	46.85
	Stream Mole Rat Heating Value	io [BTU/SCF	1.0000	0.9800	0.9227	0.0200 2295.46	0.0573 2762.24	0.0773 2641.57
	Gas Gravity	[Gas/Air				1.42	1.69	1.62
		#187895 W220 Recks Tolling Tol	-			ecroners asserted	Colors (Progressed)	1000000 150000 0000000

Bubble Pt. @	100F	[psia]	39.65	20.52	6.29
RVP @ 100F		[psia]	16.29	12.62	5.56
Spec. Gravit	v @ 100F		0.720	0.722	0.725

```
************************
* Project Setup Information
Project File : M:\Users\JIngerson\Wyoming Air Applications\Patsy Draw Unit 38-72-33 1FH\Water Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 98.0% Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
Filed Name
                      : Patsy Draw Unit
Filed Name : Patsy Draw Unit
Well Name : Patsy Draw Unit 38-72-33 1
Well ID : 49-009-30289
Permit Number : WDEQ Application Submital
Date : 2015.06.26
                      : Patsy Draw Unit 38-72-33 1FH Water Tank Flash w/ 1% Oil
: 49-009-30289
                      : 2015.06.26
********************
*************************
                     : 50.00[psig]
Separator Pressure
Separator Temperature : 125.00[F]
Ambient Pressure : 12.14[psia]
Ambient Temperature : 55.00[F]
C10+ SG : 0.8237
C10+ MW : 235.03
-- Low Pressure Oil -----
  0.0000
                           0.0000
                            0.0238
                            0.0555
                           0.3630
                           1.0631
                           3.9325
                            1.2921
                           5.1099
  10 i-C5
                           3.1839
  11 n-C5
                           4.2937
  12
13
       C6
C7
                           3.2020
7.1390
  13 C7 7.1390
14 C8 6.3438
15 C9 2.6286
16 C10+ 53.7695
17 Benzene 0.3106
18 Toluene 1.8976
19 E-Benzene 0.5650
20 Xylenes 1.5237
21 n-C6 2.8280
22 224Trimethylp 0.4747
-- Sales Oil ------
Production Rate : 1[bbl/day]
Days of Annual Operation : 365 [days/year]
API Gravity : 39.0
Reid Vapor Pressure : 5.50[
                      : 5.50[psia]
*************************
* Calculation Results
**************************
-- Emission Summary -----
                 Uncontrolled Uncontrolled Controlled Controlled
```

Tota	al HAPs al HC s, C2+ s, C3+	[ton/yr] 0.010 1.132 1.114 1.013	[lb/hr] 0.002 0.258 0.254 0.231	[to: 0.00 0.02 0.02	23 22	[1b/hr] 0.000 0.005 0.005 0.005			
Unco	ontrolled Recove	The second secon							
	Vapor	50.5600 x1E	이 맛있는 사람들이 어디어 가지 않는데 그 것이 없다면 다른데						
	HC Vapor GOR	50.0400 x1E 50.56	-3 [MSCFD] [SCF/bb]	1					
	COL	30.30	[501722	-1					
	Emission Composi								
No	Component	Uncontrolle	d Uncontro [lb/hr]		trolled	Controlle [lb/hr]	ed		
1	H2S	[ton/yr] 0.000	0.000	0.0	n/yr] 00	0.000			
2	02	0.000	0.000	0.0		0.000			
3	CO2	0.003	0.001	0.0		0.001			
4	N2	0.005	0.001	0.0	05	0.001			
5	C1	0.018	0.004	0.0		0.000			
6 7	C2 C3	0.101 0.510	0.023 0.116	0.0		0.000 0.002			
8	i-C4	0.102	0.023	0.0		0.002			
9	n-C4	0.248	0.057	0.0		0.001			
10	i-C5	0.058	0.013	0.0	01	0.000			
11	n-C5	0.056	0.013	0.0		0.000			
12	C6	0.013	0.003	0.0		0.000			
13 14	C7 C8	0.010	0.002	0.0		0.000			
15	C9	0.001	0.000	0.0		0.000			
16	C10+	0.000	0.000	0.0		0.000			
17	Benzene	0.001	0.000	0.0		0.000			
18	Toluene	0.002	0.000	0.0		0.000			
	E-Benzene Xylenes	0.000	0.000	0.0		0.000			
21	n-C6	0.009	0.002	0.0		0.000			
22	224Trimethylp	0.001	0.000	0.0		0.000			
	Total	1.141	0.261	0.0	23	0.005			
,	Sharam Baka							overhoodeed of the control of the control	
	Stream Data Component	MW	LP Oil	Flash Oi	l Sale Oil	Flash Gas	s W&S Gas	Total Emissions	3
110.	component	2211	mol %	mol %	mol %	mol %	mol %	mol %	•
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
3	CO2	44.01	0.0238	0.0102	0.0000	0.6908	0.1745	0.3080	
4 5	N2 C1	28.01 16.04	0.0555 0.3630	0.0034 0.0676	0.0000	2.6094 14.8525	0.0589 1.1571	0.7182 4.6976	
6	C2	30.07	1.0631	0.6174	0.0006	22.9266	10.5506	13.7501	
7	C3	44.10	3.9325	3.3199	0.2818	33.9871	52.2463	47.5259	
8	i-C4	58.12	1.2921	1.2244	0.7953	4.6117	8.1361	7.2250	
9	n-C4	58.12	5.1099	4.9523	4.0690	12.8412	19.1786	17.5402	
10 11	i-C5 n-C5	72.15 72.15	3.1839 4.2937	3.1888 4.3222	3.1762 4.3877	2.9432 2.8954	3.3923 3.2671	3.2762 3.1710	
12	C6	86.16	3.2020	3.2554	3.4176	0.5801	0.6442	0.6276	
13	C7	100.20		7.2763	7.6999	0.4037	0.4537	0.4408	
14	C8	114.23		6.4710	6.8652	0.1057	0.1211	0.1172	
15	C9	128.28		2.6819	2.8473	0.0142	0.0176	0.0167	
16 17	C10+ Benzene	235.03 78.11	53.7695 0.3106	54.8655 0.3161	58.2724 0.3329	0.0001 0.0404	0.0001 0.0450	0.0001 0.0438	
18	Toluene	92.13	1.8976	1.9350	2.0506	0.0404	0.0430	0.0708	
19	E-Benzene	106.17		0.5764	0.6118	0.0059	0.0068	0.0066	
20	Xylenes	106.17	1.5237	1.5545	1.6500	0.0137	0.0159	0.0153	
21	n-C6	86.18	2.8280	2.8776	3.0292	0.3924	0.4372	0.4256	
22	224Trimethylp	114.24	0.4747	0.4839	0.5125	0.0212	0.0238	0.0231	
	MW		164.69	167.21	174.56	41.14	48.84	46.85	
	Stream Mole Rat	io	1.0000	0.9800	0.9227	0.0200	0.0573	0.0773	
	Heating Value	[BTU/S				2295.46	2762.24	2641.57	
	Gas Gravity	[Gas/A	ir]			1.42	1.69	1.62	

Bubble Pt. @ 100F	[psia]	39.65	20.52	6.29
RVP @ 100F	[psia]	16.29	12.62	5.56
Spec. Gravity @ 100F		0.720	0.722	0.725

RKI Exploration & Production, LLC Patsy Draw 38-72-33 1FH nw ne 33, T38N, R72W Converse County, Wyoming

Oil Loadout

Liquid Loading Model: Oil Truck Loadout OIL LOAD-1 Source ID Number: Name

2222850 40.14 365 9.0 Molecular Weight (lb/lb-mole): Days Per Year: Load Duration (min/truck): Throughput Value (gal/yr): Saturation Factor: 55 5.56 24 223 Load Frequency (trucks/yr): Liquid Temperature (°F): Vapor Pressure (psia) Hours Per Day:

Loading Loss (lb/1000 gal) = (12.46*S*P*M)/T (AP-42 Section 5.2 (1/95)) where:

S = Saturation Factor = dedicated normal service

P = True Vapor Pressure of liquid loaded*, psia

M = Molecular Weight of Vapors, Ib/Ib-mole

T = Temp. of bulk liquid loaded, deg. R = (deg. F + 460)

Loading Loss (lb VOC/1000 gal) = 3.24 lb/1000 gal

Uncontrolled Emissions

Pollutant	Loading Loss	Loading Loss Throughput	Estima	Estimated Emissions	Source of
					Emission Factor
	(lb/1000 gal) (gal/yr)	(gal/yr)	(lb/yr)	(tpy)	
VOC	3.24	2222850	7201.07	3.60	AP42
			0.8220 lb/hr		
Controlled Emissions					
Pollutant	Loading Loss	Loading Loss Throughput	Estima	Estimated Emissions	Source of

0.0164 lb/hr

Combustor specs

(tpy)

(lb/yr) 144.02

(gal/yr) 2222850

(lb/1000 gal)

90.0

Emission Factor

RKI Exploration & Production, LLC Converse County, Wyoming Patsy Draw 38-72-33 1FH nw ne 33, T38N, R72W

Water Loadout

WATER LOAD-1 Source ID Number:

Water Truck Loadout

15,330 (assumed 1% oil in water is source of emissions) Throughput Value (gal/yr):

40.14 0.6 365 60.00 Molecular Weight (lb/lb-mole): Saturation Factor: 55 5.56 Liquid Temperature (°F): Vapor Pressure (psia)

Load Duration (min/truck): Days Per Year: 24 Load Frequency (trucks/yr): Hours Per Day:

Loading Loss (lb/1000 gal) = (12.46*S*P*M)/T (AP-42 Section 5.2 (1/95)) where:

S = Saturation Factor = dedicated normal service

P = True Vapor Pressure of liquid loaded*, psia

M = Molecular Weight of Vapors, lb/lb-mole

T = Temp. of bulk liquid loaded, deg. R = (deg. F + 460)

Loading Loss (lb VOC/1000 gal) =

3.24 lb/1000 gal

Uncontrolled Emissions

		_	
Source of Emission Factor		AP42	
Estimated Emissions	(tpy)	0.02	/r
Esti	(lb/yr)	49.66	0.0057 lb/yr
Throughput	(gal/yr)	15330	
Loading Loss	(lb/1000 gal)	3.24	
Pollutant		VOC	

Controlled Emissions

Pollutant	Loading Loss	Throughput	Estir	Estimated Emissions	Source of Emission Factor
	(lb/1000 gal)	(gal/yr)	(Ib/yr)	(tpy)	
707	900	15330	66:0	0.00	Combustor specs

0.0001 lb/yr

RKI Exploration & Production, LLC

LP Flare

Patsy Draw Unit 38-72-33 1FH

FLR-1 Equipment ID

Low Pressure Flare for Tank Emissions Source Description

Steffes SVG-3 Low Pressure Flare

Make/Model

Spark Pilot

Separator Gas HV

Gas Fuel

2,295 Btu/scf (inlet gas stream)

305 scf/hr from tank vent

30.86 lb/lb-mol

0.47 lb/lb-mol NMNE VOC Gas wt Gas HAP Gas wt VOC Destruction Efficiency

%86

Potential Emissions from Facility Flare Emissions

			Nominal	Hrs of	Estimated Emissions	Emissions	Source of
	Emission	Emission Factor	Rating	Operation	Maximum	Total	Emission
Pollutant	(lb/MMBtu)	(g/hp-hr)	(hp)	(hrs/yr)	(lb/hr)	(tpy)	Factor
NOx	0.140		NA	8760	0.10	0.43	C6 S2 Guidance
00	0.035	-	NA	8760	0.02	0.11	C6 S2 Guidance
Total NMNE VOC	ı		NA	8760	0.50	2.17	Gas Analysis
HAPs	1	+	NA	8760	0.01	0.03	Gas Analysis
H2S	0.32	1	NA	8760	0.000	0.00	Gas Analysis
502	00.00	1	NA	8760	0.00	0.00	Gas Analysis
Carbon Dioxide	116.6	1	NA	8760	81.65	357.6	Subpart C Default
Methane	0.0022	-	NA	8760	0.00	0.01	Subpart C Default

106.492(1)(D) Checklist Calculation

699,975.00 Heat Release (Btu/hr)

0.00 Allowable Minimum

Yes Does Heat Release Meet 492 Re

60.18 Maximum Velocity Calculation

Flare gas Heat Value

2.42 Megajoules/scf

85.5 MJ/scm Net Heating Value (H_T)

40 CFR §60.18(f)(6): The maximum permitted velocity, Vmax (m/sec), for air-assisted flares shall be determined by the following equation: Vmax=8.706+0.7084 (HT)

Vmax (per 60.18)

227.3 ft/sec

RKI Exploration & Production, LLC

HP Flare

Patsy Draw Unit 38-72-33 1FH

FLR-2 Equipment ID

High Pressure Flare for Separator/HT/Emergency Emissions Source Description

Steffes SHP-6 High Pressure Flare

Make/Model

Spark

Pilot

1,448 Btu/scf (inlet gas stream) Separator Gas HV 6,042 scf/hr from Separator & H/T vents (Only when gathering system is down - assume 10%)

9.38 lb/lb-mol NMNE VOC Gas wt

Gas Fuel

0.45 lb/lb-mol Gas HAP Gas wt VOC Destruction Efficiency

%86

Potential Emissions from Facility Flare Emissions

comment of the commen	, , in a supplier of the						
			Nominal	Hrs of	Estimated Emissions	Emissions	Source of
	Emission Factor	ו Factor	Rating	Operation	Maximum	Total	Emission
Pollutant	(lb/MMBtu)	(g/hp-hr)	(hp)	(hrs/yr)	(lb/hr)	(tpy)	Factor
NOx	0.140	1	NA	876	1.22	0.54	C6 S2 Guidance
00	0.035	1	NA	876	0.31	0.13	C6 S2 Guidance
Total NMNE VOC	1	1	NA	876	2.99	1.31	Gas Analysis
HAPs	1	1	NA	876	0.14	90.0	Gas Analysis
H2S	0.32	1	NA	876	0.000	0.00	Gas Analysis
502	0.00	1	NA	876	0.00	0.00	Gas Analysis
Carbon Dioxide	116.6	1	NA	876	1020.50	447.0	Subpart C Default
Methane	0.0022	31	NA	876	0.02	0.01	Subpart C Default

106.492(1)(D) Checklist Calculation

Heat Release (Btu/hr) 8,748,816.00

0.00 Allowable Minimum

Yes Does Heat Release Meet 492 Re

60.18 Maximum Velocity Calculation

1.53 Megajoules/scf Flare gas Heat Value

54.0 MJ/scm Net Heating Value (H_T)

40 CFR §60.18(f)(6): The maximum permitted velocity, Vmax (m/sec), for air-assisted flares shall be determined by the following equation: Vmax=8.706+0.7084 (HT) 154.0 ft/sec

Vmax (per 60.18)

RKI Exploration & Production, LLC Robbins Unit 39-72-4 Pad Well 1FH ne nw 46, T39N, R72W Converse County, Wyoming

RKI Exploration & Production, LLC Patsy Draw 38-72-33 1FH nw ne 33, T38N, R72W Converse County, Wyoming

Fugitive Emissions (FUG-1)

Uncontrolled Emissions

Wt Perecent Gas: Wt Percent HC:

Wt Percent HC:
Wt Percent VOC:
Wt Percent HAPs:

100.00 AMR Gas Analysis of 3/13/2015 and C6+ Breakout Analysis 96.28 AMR Gas Analysis of 3/13/2015 and C6+ Breakout Analysis

37.37 AMR Gas Analysis of 3/13/2015 and C6+ Breakout Analysis 1.81 AMR Gas Analysis of 3/13/2015 and C6+ Breakout Analysis

Leak Rate in Tons Per Year

							The second secon		דכמוי וימנכ ווו וסוום ו כו וכמו	חוז ו כווס	
Equipment Type	Gas Leak EF	Source	Percent	Percent	Percent	Operated	Gas Rate	Gas Rate	HC Rate	VOC Rate	HAPs Rate
	lb/hr/source	Count	HC	VOC	HAPs	Hours	lb/hr	tpy	tpy	tpy	tpy
Valves	0.005420	75	96.28	37.37	1.81	8,760	0.3914	1.714	1.650	0.641	0.002
Flanges	0.000241	118	96.28	37.37	1.81	8,760	0.0274	0.120	0.115	0.045	0.000
Connectors	0.000458	124	96.28	37.37	1.81	8,760	0.0547	0.239	0.231	0.089	0.000
Other	0.016666	17	96.28	37.37	1.81	8,760	0.2728	1.195	1.150	0.446	0.001
Open Ended Lines	0.003080	1	96.28	37.37	1.81	8,760	1	-		1	1
Pumps	0.028750	_	96.28	37.37	1.81	8,760	1	1	1	1	1
Totals							0.746	3.268	3.147	1.221	0.003

Notes: Oil and Gas Production Operations leak emissions factors from EPA 453/R-95-017.

RKI Exploration & Production, LLC Patsy Draw 38-72-33 1FH nw ne 33, T38N, R72W Flash Gas Component Analysis

Oil Tank Flash Gas Analyis from E&P TANKS 2.0 Run (06/24/2015)

Component	(1) mol <u>%</u>	(2) mol fraction	(3) Comp MW	(4) Gas MW	(5) HC MW	(6) VOC MW	(7) HAP MW
H2S		ı	34.08	9			3
02	1	x	32.00	.7			
C02	0.6908	0.0069	44.01	0.3040			
N2	2.6094	0.0261	28.01	0.7310			
C1	14.8528	0.1485	16.04	2.3827	2.3827		
72	22.9266	0.2293	30.07	6.8938	6.8938		
S	33.9871	0.3399	44.10	14.9870	14.9870	14.9870	
i-C4	4.6117	0.0461	58.12	2.6804	2.6804	2.6804	
n-C4	12.8412	0.1284	58.12	7.4636	7.4636	7.4636	
i-C5	2.9432	0.0294	72.15	2.1235	2.1235	2.1235	
n-C5	2.8954	0.0290	72.15	2.0890	2.0890	2.0890	
90	0.5801	0.0058	86.18	0.4999	0.4999	0.4999	
C7	0.4037	0.0040	100.20	0.4045	0.4045	0.4045	
82	0.1057	0.0011	114.23	0.1207	0.1207	0.1207	
65	0.0142	0.0001	128.26	0.0182	0.0182	0.0182	
C10+	0.0001	0.0000	142.28	0.0001	0.0001	0.0001	
Benzene	0.0404	0.0004	78.11	0.0316	0.0316	0.0316	0.0316
Toluene	0.0644	0.0006	92.14	0.0593	0.0593	0.0593	0.0593
E-Benzene	0.0059	0.0001	106.17	0.0063	0.0063	0.0063	0.0063
Xylenes	0.0137	0.0001	106.17	0.0145	0.0145	0.0145	0.0145
n-C6	0.3924	0.0039	86.18	0.3382	0.3382	0.3382	0.3382
224 Trimethylpentane	0.0212	0.0002	114.24	0.0242	0.0242	0.0242	0.0242
Totals	100.0000	1.0000		41.1725	40.1375	30.8610	0.4741

97.49 74.96 1.15

Wt % HC: Wt % VOCs: Wt % HAPs:

RKI Exploration & Production, LLC Patsy Draw 38-72-33 1FH nw ne 33, T38N, R72W Converse County, Wyoming

Gas Analyis from AMR Analysis (03/13/2015) & C6+ Breakout Information

	(1)	(2)	(3)	(4)	(5)	(9)	(7)
Component	% lom	mol fraction	Comp MW	Gas MW	HC MW	VOC MW	HAP MW
H2S	1	,	34.08				,
02	•	i	32.00	ı			
C02	1.6240	0.0162	44.01	0.7147			
N2	0.7800	0.0078	28.01	0.2185			
C1	67.6194	0.6762	16.04	10.8475	10.8475		
C2	13.1190	0.1312	30.07	3.9448	3.9448		
C3	9.1640	0.0916	44.10	4.0410	4.0410	4.0410	
i-C4	1.1620	0.0116	58.12	0.6754	0.6754	0.6754	
n-C4	2.8670	0.0287	58.12	1.6664	1.6664	1.6664	
i-C5	0.7550	0.0076	72.15	0.5447	0.5447	0.5447	
n-C5	0.8190	0.0082	72.15	0.5909	0.5909	0.5909	
90	1.3383	0.0134	86.18	1.1533	1.1533	1.1533	
C7	0.1440	0.0014	100.20	0.1443	0.1443	0.1443	
C8+	0.1006	0.0010	114.23	0.1149	0.1149	0.1149	
63	1	1	128.26	1	Ü	ı	
C10+		i	142.28	1	ï	Ē	
Benzene	0.0694	0.0007	78.11	0.0542	0.0542	0.0542	0.0542
Toluene	0.0597	9000.0	92.14	0.0550	0.0550	0.0550	0.0550
E-Benzene	0.0029	0.0000	106.17	0.0031	0.0031	0.0031	0.0031
Xylenes	0.0151	0.0002	106.17	0.0160	0.0160	0.0160	0.0160
n-C6	0.3100	0.0031	86.18	0.2671	0.2671	0.2671	0.2671
224 Trimethylpentane	0.0506	0.0005	114.24	0.0578	0.0578	0.0578	0.0578
Totals	100.0000	1.0000		25.1096	24.1763	9.3841	0.4533

96.28 37.37 1.81

Wt % HC: Wt % VOCs: Wt % HAPs:

AMERICAN MOBILE RESEARCH, INC.

1955 CBS COURT CASPER, WYOMING 82604

COMPANY..... RKI EXPLORATION AND PRODUCTION

(307) 235-4590 OFFICE PHONE (307) 265-4489 OFFICE FAX

CERTIFICATE OF ANALYSIS ROUTINE HYDROCARBON GAS ANALYSIS

COMMINATION	KINI LIZI I	201011101111	TID TRODE	CHOIL		
LAB NUMBER DATE SAMPLED					TUDY NUMBER	2000 CO
SAMPLE IDENTIFICA	TION	. PATSY DRA	AW 38-72 33-	1FH		
LOCATION	DOUGLAS	WYOMING				
PRESSURE		, wroming.		т	EMPERATURE	105 52 T
TYPE SAMPLE					AMPLED BY	
CYLINDER ID						
SAMPLE METHOD					OUNTY	
SAMPLE METHOD	GPA-2100			1	EST METHOD	GPA 2261
COMPONENTS	MOLE%	,				
COMI CIVEIVIO	MOLL	<u> </u>				
NITROGEN	0.780					
METHANE	67.614		GPM			
CARBON DIOXIDE	1.624	_				
ETHANE	13.119		3.500			
H2S	0.000		0.000			
PROPANE	9.164		2.518			
iso-BUTANE	1.162		0.379			
n-BUTANE	2.867		0.902			
iso-PENTANE	0.755		0.275			
n-PENTANE	0.819		0.296			
HEXANES+	2.096		0.912			
TOTALS	100.000		8.782			
SPECIFIC GRAVITY AT	50/60 F, cal	culated			0.86996	
TOTAL GPM (ETHANE	EINCLUST	VE)			8.782	
CALCULATED BTU / RI	EAL CF AT	14.73 PSIA, dry	basis			
CALCULATED BTU / RI	EAL CF AT	14.73 PSIA, wet	basis		1433.549	

NOTE: ABOVE CALCULATIONS PERFORMED USING PHYSICAL CONSTANTS FROM GPA 2145-09. THE HEXANES+ (C6+) FACTORS ARE CALCULATED AS A RATIO AMOUNT OF HEXANES (60%), HEPTANES (30%), AND OCTANES (10%).

AVERAGE MOLECULAR WEIGHT....

MOLAR MASS RATIO....

RELATIVE DENSITY, (GXZ(AIR)/Z).....

IDEAL GROSS HEATING VALUE, BTU / IDEAL CF AT 14.696 PSIA.....

COMPRESSIBILITY FACTOR (Z)....

James A. Kane, President American Mobile Research, Inc. 25.196

0.8700

0.8747

1447.507

0.99463

Patsy Draw 38-72-33 1FH Frontier Gas Analysis of 3/13/2015

	C6+ Total:	2.0960
Component	C6+ Factor	mole %
Other C6	0.6385	1.3383
n-C6	0.1479	0.3100
C7	0.0687	0.1440
C8+	0.0480	0.1006
2,2,4 Trimethyl Pentane	0.0267	0.0560
Benzene	0.0331	0.0694
Toluene	0.0285	0.0597
Ethylbenzene	0.0014	0.0029
Xylenes	0.0072	0.0151
	_	
		2.0960